skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yactayo-Chang, Jessica P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY Zea mays(maize) makes phytoalexins such as sesquiterpenoid zealexins, to combat invading pathogens. Zealexins are produced from farnesyl diphosphate in microgram per gram fresh weight quantities. As farnesyl diphosphate is also a precursor for many compounds essential for plant growth, the question arises as to howZ. maysproduces high levels of zealexins without negatively affecting vital plant systems. To examine if specific pools of farnesyl diphosphate are made for zealexin synthesis we made CRISPR/Cas9 knockouts of each of the three farnesyl diphosphate synthases (FPS) inZ. maysand examined the resultant impacts on different farnesyl diphosphate‐derived metabolites. We found that FPS3 (GRMZM2G098569) produced most of the farnesyl diphosphate for zealexins, while FPS1 (GRMZM2G168681) made most of the farnesyl diphosphate for the vital respiratory co‐factor ubiquinone. Indeed,fps1mutants had strong developmental phenotypes such as reduced stature and development of chlorosis. The replication and evolution of thefpsgene family inZ. maysenabled it to produce dedicated FPSs for developmentally related ubiquinone production (FPS1) or defense‐related zealexin production (FPS3). This partitioning of farnesyl diphosphate production between growth and defense could contribute to the ability ofZ. maysto produce high levels of phytoalexins without negatively impacting its growth. 
    more » « less